Geoprocessing with ModelBuilder and Python

Jeremiah Lindemann
ESRI Denver
AGIC 2005 Conference
Prescott, AZ

Workshop agenda

- Geoprocessing
- Introduction to Modelbuilder
 - Building and running models
 - Exporting models
- Introduction to Python
 - Scripting overview
 - Python language
 - Batch Processing
 - Making Scripts Dynamic

Geoprocessing and Models

What is geoprocessing?

Perform a variety of geographic based tasks

Conversion

Data Management

Spatial Analysis

Geoprocessing framework

Multiple environments

ArcToolbox

- Dockable window
- Toolboxes and tools: functionally ordered tree view
- Number of tools depends on license
- Tools can be used in models

ArcGIS extensions

Business Analyst

Spatial Analyst

3D Analyst

Geostatistical Analyst

Network Analyst

Data Interoperability

Tools and licensing

- The tools vary depending on license/extensions
 - ArcView: 159 tools
 - ArcEditor: 184 tools
 - ArcInfo: 216 tools
 - More tools available with additional extensions

Types of models

- Repetitive tasks
 - Minimize grunt work
 - Efficiently execute frequently used tools

FutureLan dUse

Add Field

Output Featurecla

Output Featurecla

Output Featurecla

- Suitability models
 - Use to find best location (businesses, vineyards, evacuation centers)

Best store location

GIS data layers

- Process models
 - Show the landscape as conditions change (fire spreads, rivers flood, oil slicks move)

Filling a reservoir

Introduction to Modelbuilder

ModelBuilder

Why use ModelBuilder?

- Fast analysis
- Re-execute the same model, slightly changing parameters to see how end results differ
- Complex analysis
- Graphical documentation of work

Model elements

- Project data: Data that exists before model is run
 - Blue oval
- Tool: Operation performed on input data
 - Yellow-orange rectangle
- Derived Data: Output data created by a function
 - Green oval
- Process: Set of elements
 - Run one process at a time or all at once

Creating a model

Adding model elements

- Drag and drop from ArcCatalog or ArcMap
 - Tools from ArcToolbox
 - Data
- Add empty variables
 - Supply data source at a later time

Tools within a model

- Right-click or double-click to obtain parameters
 - Same dialog as tools from a toolbox

Supported data types

- Works with all data types used in ArcGIS
- Drag and drop data into model from ArcCatalog

Parameters

- Input/Output data and values for a tool
- Used for running model as dialog
- Right-click model element and choose to create parameter

Running models with parameters

All parameters in model appear in model dialog

Three states of model elements

- Not ready to run: Parameters not defined
- Ready to run: All elements colored
- Already run: All elements colored and shadowed

Running models

All parameters created in model appear in model

How to execute models

- Entire model from ModelBuilder
 - Can execute one process at a time from ModelBuilder

As a tool dialog

Demonstration 1

- Create a toolbox
- Create and run a simple model
 - Drag and drop tools and data
 - Parameters

Managing derived data

- Set as model parameter
- Add to display
 - Derived data is added to ArcMap display
- Intermediate (default)
 - Deleting Intermediate data deletes all output data flagged as intermediate

Embedding models

- Drag and drop model from toolbox
- Output from embedded model must be model parameter to be exposed in larger model

Saving and sharing models

- Why share models
 - Collaboration
 - Refine and standardize models
- Model is saved to .tbx file or in geodatabase
 - Give .tbx or geodatabase to share mode
- Set model parameters if used with different data

History thy	2 976 KB	TBX File
My Toolbox.tbx	104 KB	TBX File
MyWork.tbx	4 KB	TBX File
🗃 Toolbox (2).tbx	7 KB	TBX File
🗃 Toolbox (3).tbx	7 KB	TBX File
Toolbox.tbx	134 KB	TBX File

Model labels

- Diagram: Free-floating labels
- Element: Maintain position relative to model elements

 Connector (tool or data): Maintain position relative to connector

Exporting and printing models

- Export to a graphic
 - Export as .bmp, .jpg, and .emf
 - Place in map layouts
- Export models to scripts
 - Python, JScript, and VBScript
- Printing models
 - Modify print settings Area to print
 - Number of pages on which the model will print

Demonstration 2

- Show how to share the model
- Export to python script

Introduction to Scripting and Python

Python

- Why use scripts and Python?
- Python code structure
- Selected geoprocessing tools
- Getting help with writing scripts
- Batch processing
- Making a script dynamic

Why write scripts for geoprocessing?

- Similar advantages that models have
 - Efficiently execute series of different tasks
 - Easy to read and document
 - Easy to share
- Perform batch operations
- Self contained (single file)
- Run any time
- Familiar environment for AML and Avenue users

Why use Python?

- Flexible, easy scripting language
- Object-oriented
- Offers a debugging environment
- Modular: Can be broken apart
- Cross platform
- It is FREE
- ESRI samples provided

PythonWin interface

- Menus, toolbars, and context menus
- Script window
 - Write and save code
- Interactive window
 - Test lines of code
 - Report messages
- Benefits
 - Windows look and feel
 - All in one application
 - Script tools open in PythonWin

Python Overview

- The geoprocessor
- Writing scripts
 - Comments
 - Variables
 - Syntax
 - Strings
 - Numbers

Writing scripts

Import COM client support

```
import win32com.client
```

Instantiate the Geoprocessor object

```
gp = win32com.client.Dispatch("esriGeoprocessing.GPDispatch.1")
```

Set properties (e.g., workspace)

```
gp.workspace = "c:\\Florida.mdb"
```

Comment code

```
# Buffer roads by 100 meters
```

Run tools

```
gp.Buffer_analysis("roads", "rdbuf100",
    "100")
```


The Geoprocessor ArcObject

- Most geoprocessing functionality on one ArcObject
 - Geoprocessor (GpDispatch)

The Geoprocessor has many properties and

methods

Geoprocessor Properties

- Current workspace
- Cluster tolerance
- Cell size

Methods

- Buffer
- Clip
- Select
- Import from CAD
- Copy features
- Add field

Environment settings

Tools

Syntax for properties and methods

To assign a value to a property
 Object.Property = Value
 gp.Workspace = "C:\\temp"

- To get the value of a property
 Object.Property
 gp.Workspace
- To use a method
 Object.Method (arg, arg, ...)
 gp.Buffer_analysis (fc, "C:\\temp\\buff.shp",
 100)
 - Parentheses around arguments
 - Arguments separated by commas

Comments

- Comment: A non-executable line of code
 - # sign
 - Comment and uncomment blocks of code to control execution

```
# Date: July 11, 2005
# Purpose: To buffer a feature class.
import win32com.client
gp =win32com.client.Dispatch("esriGeoprocessing.GpDispatch.1")
gp.Workspace =
    "C:\\Student\\PYTH\\Database\\SanDiego.mdb"
## Buffer the Freeways feature class 1000 feet.
gp.Buffer analysis ("Freeways", "BuffFreeway", 1000)
```


Example: The Buffer tool

Syntax

```
Buffer_analysis (in_features,
out_feature_class, buffer_distance_or_field,
line_side, line_end_type, dissolve_option,
dissolve_field)
```

Example

```
gp.Workspace = "D:\\AGIC2005"
gp.Buffer_analysis("Highway.shp",
   "BuffHighway.shp", "100 feet")
```

Notes

- If specifying units, make the argument a string
 - If units not specified, input feature class units used

Example script

```
# Import COM support
import win32com.client
# Create the Geoprocessor object
gp = win32com.client.Dispatch("esriGeoprocessing.GpDispatch.1")
roads = "C:/Data/Florida/ROADS.shp"
Out Buff = "C:/Data/Florida.mdb/ROADS Buffer"
citylimit = "C:/Data/Florida/citylimit.shp"
Out Clip = "C:/Data/Florida.mdb/BUFF Clip"
# Process: Buffer...
gp.Buffer analysis(roads, Out Buff, "10", "FULL", "ROUND")
# Process: Clip...
gp.Clip analysis (Out Buff, citylimit, Out Clip)
```


Learning how to populate tool arguments

If I want to use the UNION tool, how would I know that the inputs are separated by semicolons?

- ArcGIS Desktop Help
- If help is not detailed enough, export the tool from a model to a script

Demonstration 3

- Where to find help ArcGIS Desktop Help
 - Geoprocessing tools
 - Geoprocessor object methods
- Running the a geoprocessing tool

Batch Processing and advanced Scripting functionality

Batch processing

- Scripts are ideally suited for batch processing
- Example: Clip all shapefiles in a folder to a boundary

Rerun script when new data is added to folder

Listing data

- Enumeration: Lists of objects without a known count
- Use a looping structure to process one object at a time
 - ListFeatureClasses (Wildcard (optional), Type (optional))

```
#return a list of shapefiles in a workspace
```

```
gp.workspace = "C:\\Yellowstone"
fcs = gp.ListFeatureClasses("*", "all")
```

- Examples of Enumerations
 - ListFeatureClasses
 - ListFields
 - ListTables
 - List Indexes
 - ListRasters
 - ListWorkspaces
 - ListDatasets

fcs = all shapefiles in C:\Yellowstone

Looping

While a condition is true

```
gp.workspace = "C:\\Yellowstone"
fcs = gp.ListFeatureClasses ("*", "all")
fc = fcs.next()
clipfc = "C:\\Yellowstone\\studyarea.shp"
outws = "C:\\Yellowstone\\model"
while fc != "":
   gp.clip analysis(fc, clipfc, outws + "\\" + fc)
   fc = fcs.next()
```

- Loop is defined by indentation in Python
- Indentation is a language construct in Python
 - Needs to be consistent
 - Use <Tab> or spaces

Making Scripts Dynamic

Making scripts dynamic

- Scripts can be static or dynamic
 - Up until now, all your scripts have been static
- Can add arguments to make a script dynamic
 - Let user run from ArcToolbox
- Two ways to create arguments
 - Python has a function called sys.argv[]
 - The Geoprocessor has a method called GetParameterAsText()

Creating arguments: sys.argv[]

- Need to import the sys module
- First argument starts at 1
- Run from ArcToolbox, PythonWin, or Command **Prompt**
- Limit to the number of characters

```
gp = win32com.client.Dispatch("esriGeoprocessing.GpDispatch.1")
gp.Workspace = sys.argv[1]
bufFC = sys.argv[2]
bufOut = sys.argv[3]
bufDist = sys.arqv[4]
```

import win32com.client, sys

Why use parameters with script tools?

- Makes scripts more flexible
- Dynamically assigns script args
 - Workspace
 - Feature classes
 - String, numbers
- Write scripts to capture arguments

```
import win32com.client, sys

gp = win32com.client.Dispatch("esriGeoprocessing.gpDispatch.1")

gp.workspace = sys.argv[1] # first argument

buffc = sys.argv[2] # second argument

buffoutput = sys.argv[3]

buffdistance = sys.argv[4]
```


Attaching a script to a tool

- Use a custom toolbox
 - System toolboxes are Read-only
- Right-click the toolbox and click Add > Script

Parameter properties

Demonstration 4

- Add parameters to a script
 - Sys.argv[]

Resources for learning Python

- Books
 - Learn to Program Using Python
 - Learning Python
 - The Quick Python Book
 - Python, Essential Reference
- Web sites
 - The Python Foundation (<u>www.python.org</u>): Tutorials, documentation
- ESRI Instructor-led course
 - Introduction to Geoprocessing Scripts Using Python
- Writing Geoprocessing Scripts with ArcGIS .pdf
- Online help

